An automatic video-object oriented steganographic system is proposed for biometrics authentication over error-prone networks. Initially, the host video object is automatically extracted through analysis of videoconference sequences. Next, the biometric pattern corresponding to the segmented video object is encrypted by a chaotic cipher module. Afterwards, the encrypted biometric signal is inserted to the most significant wavelet coefficients of the video object, using its qualified significant wavelet trees (QSWTs). QSWTs provide both invisibility and significant resistance against lossy transmission and compression, conditions that are typical in error prone networks. Finally, the inverse discrete wavelet transform (IDWT) is applied to provide the stego-object. Experimental results under various losses and JPEG compression ratios indicate the security, robustness, and efficiency of the proposed biometrics hiding system.
Loading....